
'A0-Alll 378 MINNESOTA UNIV MINNEAPOLIS DEPT OF COMPU)TER SCIENCE F/6 12/2
PARALLEL MATCHING SALGORITHM FOR CONVEX BIPARTITEGRAPHS AND, A-ETC(U)

APR Al E DEKEL , S SAHNI NO01Aso C -0 5O
JNCLASSIFIED TR-81-3 SBI-AD-EO01 187 NL

L moEEEIEEE
mommhmmm
EEIL

L. jjj 1 1111115
1.0

...........

..........

L4 111112-0

1 1.81U
...... = jjjj111& 25 -4 111111.6

I I)I , 1, 1 1 1 1" IN

Computer Science Department

136 Lind Hall

Institute of Technology

University of Minnesota

Minneapolis, Minnesota 55455

A Parallel Matching Algorithm

for Convex Bipartite Graphs and

Applications to Scheduling

by

Eliezer Dekel and Sartaj Sahni

Technical Report 81-3

April 1981

*1 j has beOu OP'~

Cover design courtesy of Ruth and Jay Leavitt. totpdic re. u~.1ied.

distrlbufiou Is

8202 .14 046

A Parallel Matching Algoritnm for Convex Bipartite
Graphs and Applications to Scneduling*

Zliezer Derel and Sartaj Sahni
Jniversity of Minnesota

Ans cract

An efficient parallel algorithm to obtain maximum
matcning3 in convex bipartite graphs is obtained. rhis
algorithm can ne used to obtain efficient parallel algo-
ritnms for several scheduling problems. Some examples are:
job scheduling witn release times and deadlines; scneduling
to minimize maximum cost; and preemptive scneduling to
minimize maximum completion time.

Key dords and Phrases: Parallel algorithm, convex bipartite
graph, scheduling, complexity.

1
AcceSSI" Yr

tDTIC ?AS ['Ullannouaood

jI~tjf jaion----

1By-

n stributi/O' .-- 4

\,.se.k I CI

WTHIs research was supported in part by the Office of
Naval Research under contract N00014-80-C-J650.

-2-

i. .ntroduction

A convex bipartite graph j is a triple (A,B,S). A =
[a ,a I and = to, b2b I are disjoint sets of
vaetiges. is the edge set. Z satisaies the following pro-
parties:
(1) If (ij) is an edge of Z, then either i4A and j4B or i

4B and j4A; i.e., no edge joins two vertices in A or
two in B.

(2.) £f (ai, i)4E and (aiabj+k)4E, then (ai,b j+q)4E, 1_vk.

Property (1) above is the bipartite property while property
(2) is tne convexity property. An example convex bipartite
graph is shown in Figure I.1.

A B
aI bI

a2 b2

a 3 b 3

a 4

a5

Figure 1.1 A convex bipartite graph.

F c E is a matching in the convex bipartite graph
G=(A,B,Z) iff ao two edges in F have a common enipoint.
Fl=(alb), (a4 b3), (as,b 1)Iis a matching in the graph of

Figure .l wnile F2=((a eb),(a1 ,b),(a,b 3)) is not. F is
a maximum car lit maiching (or ii ply a maximum matcn-
ing) in G iff (a) F is a matcing and (D) G contains no
matching Hi such that kI>WF (Itil=number of edges in H).
The matching depicted by solid lines in Figure 1.1 is a max-
imum matching in that graph.

In what follows, we shall find it conveniant to have an
alternate representation of convex bipartite graphs. it is
cledr that every convex bipartite graph G-(AB,),
A-(a ...,a 1, B-(bi....b I is uniquely represented by the
set f triples:

T t(i,s.,h)lin)si itlai b j)_- i

-I-I-

hi=max(ji(ai,bj)4E)

intuitively, in the tripe resentation, we expli-
citly record the smallest (s) and nighest (h) index ver-
tices to which each a. is connected. For thei example of
Figure i.1, we have T'= [(1,1,2), (2,3,3), (3,@,J), (4,3,3),
(5,1,)1.

As an example of the use of matchings in convex bipar-
tite graphs, consider tne problem of scheduling n unit time
jobs to minimize the number of tardy jobs. in this problem,
we are given a set, of n jobs. Job i has a release time r.
and a due time d.. it requires one unit of processing.
suosec F of J is a feasiole subset iff every job in F can be
scheduled on one machine in such a way that no job is
scneduled before its release time or after its due time. A
feasible subset F is a maximum feasible suoset iff there is
no feasible subset J of J such that TQ>JTTF.

A maximum feasible subset F can be found by transform-
ing the problem into a maximum matching problem on a convex
bipartite graph. Without loss of generality, we may assume
that all the r.s and d.s are natural numbers; min(r.}=J;
r.(d., li(n; and max [d J}n. The convex bipartite graph
c~rrisponding to J is iVen by the triple set T = U(i, si,
h.) I s.=r,h.=d.-l}. Figure 1.2 shows an example joo set
and the corresponding convex bipartite graph G. Vertex i of
A represents job i while vertex i in B simply represents the
time slot Ci,i+lj. There is an edge from job i to time slot
Cj,jl] iff r.<j<d.. Hence, every matching in G represents
a feasible s&bset of 3. Also, corresponding to every feasi-
ble subset of J there is a matching in G. Clearly, a max-
imum cardinality feasible subset of J can be easily obtained
from a maximum matching of G. In addition, a maximum match-
ing also provides the time slots in which the jobs should be
scheduled.

We shall see several other examples of tne application
of matchings in convex bipartite graph3 in later sections.

Glover [4] has obtained a rather simple algorithm to
find a maximum matching in a convex bipartite grapa
G=(A,B,L). Let n=maxljl (a.,b.)4 E1, l<i<IAI. Glover's
algorithm considirs the vertlcel in B one by-one starting at
b I We first determine the set R of remaining vertices in A
to wnich the vertex b. currently being considered is con-
nected. Let q be such that a 4R and h q min(h 1. Vertex

q q a 4R
b. is matched to a and a deleted from thi graph. The next
vartex in B is ow cogsidered. Figure 1.3 specifies
Glover's algorithm more formally. By using appropriate data
structures, Glover's algorithm can be implemented to run in
J(mn) time.

-4-

r,=s di=h +1 A B

0 2

o 3 2

2 4 3 2

2 6 .

4 5 5

2 6

Figure 1.2

procedure MATCH(G,m,n,h)
///G=(A,B,Z) is a convex bipartite graph. IAI=n,IB1=m//
//n =max{jI (a. ,b.)4E.A maximum matching//
//m is found/ '

set M; integer m,n, I:n graph G

for i +- 1 to m do
let R be the set of remaining vertices to which b.
is connected I
if R#I then q4--j such that j4R and n= mi in PI

M <-- M U J a ,b. p4R

delete a frm
endif

end for
return (

end MATCH

Figure 1.3 Glover's maximum matching algorithm.

In this paper, we are primarily concerned with parallel
algorithms. In Section 2, we obtain a parallel algorithm
for maximum matchings in convex bipartite graphs. In Sec-
tion 3, we use this parallel algorithm to obtain efficient
parallel algorithms for three scheduling problems.

Tne parallel computer model used is the shared memory
model (SM4). This is an example of a single instruction
stream multiple data stream (SIMO) computer. In a SM14 com-
puter, there are p processing elements (P2s). Each PE is
capable of performing the standard arithmetic and logical

operations. rho P~s are indexed 4,.,...,p-l and an indivi-
dual PE may oe referenced as in PE(i). Eacn PZ Knows its
index and has some local memory. in addition, there is a
global memory to which every PE has access. The PEs are syn-
chronized and operate under the control of a single instruc-
tion stream. An enable/disable mask may be used to select a
subset of the PEs that are to perform an instruction. Only
the enabled PEs will perform the instruction. Disabled PEs
remain idle. All enabled PEs execute the same instruction.
The set of enabled PEs may change from instruction to
instraction.

If two Pis attempt to simultaneously read the same word
of tne shared memory, a read conflict occurs. If two PEs
atteatpt to simultaneously write into the same word of the
shared memory, a write conflict occurs. rhroughout this
paper, we shall assume tnat read and write conflicts are
prohibited.

2he reader is referred to C2] for a list of references
dealing with graph algorithms, matrix algorithms, sorting,
scheduling, etc. on a SMM computer.

I
2. Parallel Matching In Convex Bipartite Graphs

In Section I, we showed that every instance of the problem
of scheduling jobs to minimize the number of tardy jobs
could be transformed into an equivalent instance of the max-
imum 1natching in a convex bipartite graph problem. It
should be evident that the reverse is also true. aence, the
two problems are isomorphic. A parallel algorithm for a
special case of the job scheduling formulation was ootained
Dy us in [I]. In this special case, it was assumed that all
jobs nave the same release time. This corresponds to the
case when the convex bipartite graphs are of the form
T=U(i,si,h)Il'ic<nl si=c,lin for some c.

We shall now proceed to show how the solution for the
special case described above can oe used to solve the gen-
eral case when all the r.s are not the same. This will be
done using the binary' tree metiiod described by Dekel and
Sahni [2J. Rather than specify the new algorithm formally,
we shall describe how it works by means of an example.

A convex bipartite graph is shown in Figure 2.1. For
this graph, JAJ-14 and IBI=13. The si and h. values associ-
ated with each vertex of A are given in the first two
columns of this figure. The first step in our parallel
algorithm for maximum matching is to sort the vertices in A
in nondecreasing order of s.. Vertices with the same s. are
sorted into nondecreasing oider of h. For our example, the

I|

S. h.

4 8

4 2

4 1

9 1

12 1 01

4 11 12 1

12 13 13 1

12 12 14

Figure 2.1

result of this reordering is shown in Figure 2.2.

17 3 2 4 6 1 5 1219 81114 1013

Sill1 1 14 4 444 9991212 12.1

h 2 3 4 4 418 10 11 10 11 13 12 13 13

Figure 2.2

-7-

Following the sort, we identify the distinct s. values.
Let tnese De R R, ...,R k . Assume that R < R2 <.. .. Let
R k=maxfd.1+1. Fgr our xampla, k=4 and R(l:k+4l) = (1, 4,
9, l2 4).

We are now ready to use the binary tree method of [21.
The underlying computation tree we shall use is the unique
complete binary tree with k leaf nodes. Figure 2.3 shows
tne complete binary trees with 4, 5, and 6 leaf nodes. For
our example, k=4 and we use the tree of Figure 2.3(a). With
each node, P, in the computation tree, we associate a con-
tiguous subset [u,u+I,u+2,...,v} of the vertices in B. This
subset is denoted [u,v].P or simply [u,v].

I©

(a) 4 leaves (b) 5 leaves (c) 6 leaves

Figure 2.3: Complete binary trees.

Let the leaf nodes of the computation tree be numbered
1 through k, left to right. If P is the ith leaf node, then
Cu,v].P is [R.,R. -11] (i.e., u=R. and v=R -1). If P is
not a leaf hod'lthen the subset of B asSO6iated with P is
Eu,vj.LC(P) U [u,v].RC(P) where LC(P) and RC(P) are, respec-
tively, the left and right children of P. The subsets of B
associated with each of the vertices in the computation tree
for our example are shown in Figure 2.4. The number in each
node of this tree is its index.

Let P be any vertex of the computation tree. Let Eu,v]
be the subset of B associated with P. The subset of A avail-
able for matching at node P is denoted M(P) and is defined
to be:

-3-

[1,13]

[1,81 Z2X,13]

[1,3] [4,8] [9,11] [12,13]

Figure 2.4

M(P)=(iiu~silvi

For,example,

M(2)=[1,2,3,4,5,6,7,12};
M(4)=[2,3,4,7};
etc.

The subset M(P) of A vertices available for matching at
P may be partitioned into three subsets Q(P), I(P), and
T(P). .(P) is a maximum cardinality subset of M(P) that may
be matched dith vertices in Eu,v].P by algorithm MATCH; tnis
subset is called the matched set. £(P) denotes the infeasi-
ble set. it consists of all vertices i4M(P)-Q(P) such thac
h.v. The transferred set T(P) consists of all vercices

such that h>v.

Consider node 2 of Figure 2.4. The matching proolem
defined at this node is given in Figure 2.5. If Glover's
algorithm is used on this graph, then (I,2,3,4,5,7,121
defines a subset of A' that can be matched with vertices in
B'. Further, this gives a maximum matching. Hence,
Q(2)=[1,2,3,4,5,7,12j; I(2)=6; and T(2)=O. Observe that
IQ(1)I is tne size of a maximum matching in the original
convex bipartite graph. Also, T(1)=o and I(1)=A-Q(1).

We shall make two passes over the computation tree.
The first pass begins at the leaves and moves towards the
root. During this pass, the Q, I, and T sets for each node
are computed. rhe second pass starts at the root and
progresses towards the leaves. In this pass, the Q set for
each node is updated so as to correspond to the set of A
vertices ma ihed by (.over's algorithm to the B vertices
asaociated tb node.

So hi A' B'

4 8 10 O

1 4 20 02

1 3 30 0:3
1 4 40 04

4 8 5(05

4 4 60 06

1 2 70 07
4 8 120 08

Figure 2.5

Pass I

in this pass, we make extensive use of the parallel algo-
ritnm developed in ClI for the case when all the sXs are the
same. For our purposes here, it is sufficient to know the
sequential algorithmn (FEAS of Cl]) that this parallel algo-
rithm is based on. This sequential algorithm is given in
Figure 2.6. For convenience, this has been translated into
the graph language used here.

line procedure FEAS(n,u,v)
//find a maximum matching of vertices in A onto the B
set £u,v] for every vertex i4A, s.=u//

1 global HAT(1:n); set A; integer n,&,vi,j
2 sort A into nondecreasing order of hi
3 MAT(l:n) 4- 0//initialize//
4 j 4- u
5 for i 4.- i to n do
6 case
7 -J~v: return(j) //all vertices in B matcned//
8 :j.h://select i// j 4-- j+l, MAT(i) -- 1
9 end ase
l1 end for
11 return j)
12 end FEAS

Figure 2.6

i - 14 -

An examination of Glover's algorithm (Figure 1.3)
reveals that it performs exactly as does procedure FEAS when
the restrictions and simplifications applicable to FEAS are
incorporated into Figure 1.3.

dence, for a leaf node of the computation tree, the Q
st may be obtained by a direct application of procedure
FEAS (or its parallel equivalent). For example, for node 4
of Figure 2.4, we nave A = M(4) = (2,3,4,71; h2=4; h =3;
n.=4; h =2; u=l; and v=4. Using FEAS, we ooiain
.4)=j7,3,2j. Jote that j consists of exactly those ver-
tices i with MAT(i)=1. l() consists of exactly those ver-
tices i witn MAT(i)=O and h.<v. rie remaining vertices form
TO. The matched set Q, transferred sec T, and infeasible
set I for eacn of the leaves in our example are shown in
Figure 2.6. Null sets are not explicitly snown. So, for
node 4, I(4)=O; T(4)=[41; and Q(4)=7,3,21. The sets are
ordered by h1 .

For a nonleaf node P, the Q, I, and T sets may be
obtained by using the Q, I, and T sets of the children of P.
Let L and R, respectively, be the left and right children of
P. To determine Q(P), we use procedure FEAS with u=uR and
v=v (Cu ,V J is the subset of B associated withi the right
chifd RR o P). The A set consists of T(L) U a(R). Since
both T(L) and Q(R) are already sorted by h., the sort ofIhi,
line 2 of FEAS can be replaced by a merge.

Let S be the subset of T(L) U Q(R) that has MATO=1
following the execution of FEAS. The following theorem
establishes that Q(L) U S is a maximum cardinality subset of
M(P) that may be matched with vertices in Cu,vj.P. ience,
Q(P)=Q(L) U S.

Tneorem 2.1: S as defined above is a maximum cardinality
subset of A(P) that may be matcned with vertices in Cu,vj.P
using algoritLun MATCH.

Proof: The proof is by induction on the distance of P from
che farthest leaves in the subtree of wnicn it is a root.
if this distance is 1, then Q(L) and Q(R) are maximum cardi-
nality subsets of M(L) and M(R) tnat can, respectively, be
matched by Glover's algorithm with vertices in £u,vj.L and
Cu,vj.R. If tnis distance is greater than 1, then Q(L) and
J(iR) satisfy this maximum cardinality matching requirement
by induction.

As far as node P is itself concerned, we see that only
vertices in A(L) are candidates for matching with vertices
in Cu v] (recall that for vertices in M(R), the si. value
excees vL). Furthermore, when Glover's algorithm is used
with the A set being M(P) and the B set being Cu ,v] =
Cu,vJ.P, vertices in B are considered in the oide uL,
UL+ ,...,vL , uR,.. .,v R . Hence, Q(L) is precisely the subset

. i N -| .. o _ ,R. .

- 11 -

[I,

1 3 2 4 1 92 1 9 8 14 10 11 13

S1 1 4 4 9 4S 9 9J12 12 9 12

2 3 4 8 80 10 10 11 11 1 12 13 4 13

TQ
7 3 2 4 16 5 12 1 9 81 141 0 13

s 1 1 1 1 s 4 4 4 s 9 9 9 S 1212 12

h 2 3 4 4 h1 4 h. 101113 1 12 13 13
T 0_ 3- ±

[1,31 [4,g C[9 ,11] [12,18]

Figure 2.7: Results of first pass.

of M(P) that gets matched with vertices in CuL,vL].

The candidates for the remaining vertices in B, i.e.,
EuRpv R I are clearly T(L) U M(R). From the way Glover's
algoritnm works, it is also clear that the vertices of T(L)
U M(R) that will get matched to Cu ,v I are a subset of r(L)
J Q(R). Let this subset be S'. AR wish to show that S is a
legitimate choice for S'. First, we show that S represents
a feasible matching. Then, we shall show that S is in fact
selectable by Glover's algorithm.

Ad know that Q(R) can be matched into [uR,v]. Let Z be
any such matcning. Since S is selected by FEAS, we know
that every vertex in S can be matched to a vertex in EuRv J
in a such a way that no vertex j in S is matched to a vdrtlx
with index greater than hi. Consider a matching W tnat

I - 12 -

meets this condition. Now suppose that some vertex j in S
is matcned to a vertex q in LuR, v] with index less than s..
Clearly, j must be a member of Q(A) (as all vertices in T(2)
nave an s value less than ua). Suppose that j is matched to
j. in Z. if j., is free in W, then the matching of j in W
may be changed from q to jl" If j is not free, then sup-
pose it is matched to J 11 j 4T(L), then j may be
matched to q and j to j1 (note that q<3and so s q h).

if 9 Q(R), then suppose that j is matched to 3 n Z. It2.n 33 I
is eaiy to see that 9.i f q=] or j3 is free in K, then
we may matcn j to j,-anA j2 to q. Otherwisa, let j4 be the
vertex matched to j3 in ". it should be clear that we can
continue in this way and modify W so tnat j is matched to
jl, j. to j3 # j

" to j, etc. In tne new matching, there is
one iewer verte3x OV S that is matched to a vertex with
smaller s value.

Repeating the aoove construction several times, W can
be transformed into a matching such that every vertex j4S is
matched to a vertex q such that u Rs.qlh.<v . dence, S
represents a feasible matching. - R

Let S' (as defined earlier) be the subset of Q(R) U
T(L) matched by Glover's algorithm to the vertex set
cUR!VR]. We shall now proceed to snow that S is a valid
choice for S'. Let Z be any matching of Q(R) into Cu ,v].
Let Y be a matching of S' in which all vertices in Q(R n S
are matched to the same vertex in CuR v RI as in the matching
Z. Let W be a corresponding matching for S. The existence
of the matchings Y and W is a consequence of the construc-
tion used to show the feasibility of S.

From the definition of S', it follows that S'S. Also,
from the working of FEAS, it follows that SOS'. Let j4S be
a vertex with least h. such that j * S'. if no such j
exists, then S=S'. Assume that j is matched to q in d. If
q is free in Y, then S' cannot be of maximum cardinality.
So, let P4S* be matched to q in Y. By definition of Y and
4, p 4 S. Also, from the order in which FEAS considers ver-
tices, h >n.. Hence, S'Utj}-fp} is also a subset selectaole
by Glovefrs algorithm. S' U fj-jpj agrees with S in one
place more than does S'.

By repeating this interchange process, S' may be
transformed into S with the result that S is also a maximum
cardinality subset of Q(R) U T(L) that is selectable by
,lover's algorithm for matching in EuRvR3.

Hence, Q(L) U S is a maximum cardinality subset of M(P)
selectable by Glover's algorithm for matching in Lu,v).P.L]

~- 13 -

ince Q(9) is Known, T(P) and I(P) are easily computed.
Actually, as I(P) is never used, we may omit its computa-
tion. Figure 2.6 snows tne Q, I, and T sets (except when
empty) for all nodes in our exampla.

Pass 2

In the second pass, for each vertex P of the computation
tree, we compute a set Q'(P) which represents the set oZ A
vertices matched by Glover's algorithm witni the set Cu,vj.P.
With repsect to the matching shown by solid lines in Figure
2.1, we see that if P is the root, then Q, (P) = [1, 2, 4,
4, 5, 7, 8,), 10, 11, 12, 141; if P is node 3 of tne compu-
tation tree, then Q'(P) = [3, 9, 10, 11, 14).

If P is the root node, then Q'(P)=Q(P), by definition
of Q(P). Let P be any nonleaf node for which Q'(P) has been
computed. Let L and R be the left and right children,
respectively, of P. Let Cu,vj.L = [uL,vLI and [u,v].R =
cuD, vRj. Let V = {jjj4Q'(P) and h.<u. Let W oe the
ordered set obtained by merging tAgeher V and Q(L) (note
that both V and Q(L) can be maintained so that they are in
nondecreasing order of h. and that W is also in nondecreas-
ing order of h.). Q(L) consists of the first mn IwI,
v -u.+1} vertices in q. The correctness of tnis statement
may e established by induction on the distance of P from
the root. J'(R) is readily seen to be Q'(P)-'(L). Figure
2.7, shows the Q'() sets for all the vertices in the compu-
tation tree of our example.

From tne Q () sets of the leaves, the matching is
easily obtained. if P is a leaf, and [u,vJ.P=[a,bj, then
tne first vertex in Q'(P) is matched with a, the second witn
a+l, etc. (note that Q'(P) is in nondecreasing order of h.).
The matching for our example is also given in Figure 2.7.

Complexity Analysis

Tne initial ordering of A by hi and within h. oy S. can be
done in O(log n) time using n/2 PEs([6] aAd [7]1. During
the first pass, the computation of Q() requires the use of
FEAS and a merge. The use of FEAS (without the sort) taxes
O(logn) time and requires O(1M(P)I/logI4(P)) PEs. The
merge at node P takes O(logn) time with IM(P)I/2 PEs.
Since, 0 can be computed in parallel for all nodes on the
same level of the computation tree, O(logn) time is neeled
per level. The total time for the first pass is O(log n)
and n/2 PEs are needed. Pass 2 requires only some2merging
per node. The total cost of this pass is also O(log n) and
n/2 PEs suffice.

- 14 -

i 7 3 24 15 9 1218 14 1011

S. 1 1 1 1 4 4 9 4 9 12 12 9

h. 2 3 4 4 8 10 i0 ii ii 12 13 13

QI

i 7 3 2 4 1 5 12 i 8 9 14 1011

S1 1 1 1 1 4 4 4 S. 9 9 12 12 9

h. 2 3 4 4 8 10 11 h 10 11 12 13 13

17 3 2 1 4 15 12 1 8 9 11 1 14 10

Si 1 1 1 s 1 4 44 Si 9 9 9 Si 12 12

h 2 2 4 h 4 8 10 11 h 10 111 3 h 12 13

[1,3] [4,8] [9,11] [12,14]

matchingf{(7,1),(3,2),(2,3),(4,4),(1,5),(5,6),(12,7),(9,9),(8,10)

(11,11), (14,12),(10,13) }

Figure 2.3 Second pass

Hence, tne overall complexity of our parallel algor~thm
for maximum matching in convex bipartite graphs is O(log n).
rhe PE requirement is O(n).

Another complexity measure often computed for parallel
algorithms is the effectiveness of processor utilization
(EPU) (see Li, [2J, and C93). For any problem P and paral-
lel algorithm A, this is defined as follows:

EPU(P,A) -

complexity of fastest sequential algorithm for P
complexity of A * number of PEs used by A

For 2 our algorithm,2 we have an EPU that is
0(nm/(log n*n)) m O(m/log n) (recall that m-IBI).

- 15 -

J. Applications to Scheduling

vie nave already seen one application of maccnings in convex
bipartita graphs to scheduling. This application was to a
proolem that is actually isomorphic to the matcaing problem;
viz. Find the maximum number of unit time jobs from
J=[(ri,d.) 1ci<nl that can be scheduled on a single machine
such that no-job is scneduled before its release time r. or
after its Jue time d i In this section, we snall look' at
three other scheduling problems that can be solved in an
efficient manner using the parallel mdtching algorithm
developed in previous section.

4.1 Scheduling to Minimize the Maximum Cost

In this problem, we are given n unit time jobs. Associated
with each job is a release time ri and a nondecreasing cost
function c (), l(i<n. Let S=(s be a one machine
schedule ior the-n jobs. si Ienotes the start time of job
i. Let q. be as defined below:

Th c i:(si) siLri} ~qi=1O ir

The cost of S is defined to be maxfqi. We wish to find a
schedule with minimum cost.

As pointed out by Rinnooy Kan [8], this problem may be
solved by first determining the finish time of a minimum
finish time schedule for the n jobs. If the n jobs are
already in nondecreasing order of release times ri , tnen a
minimum finish time schedule has start times si given by:

(0.1) sl=r

a ixmin~r i , ai + I]

This equation is a special case of Equation (6.1) of
1i1 and so we may use algorithm PADIS of Ell to obtain the

8.8. The finish time, C*, of a minimum finish time schedule
fr the n jobs is sn + 1.

For simplicity, let us assume that r 0. once C* has
been computed, a schedule that has minimum cost may be
obtained by constructing the convex bipartite graph, G, with
A=l,2,...,n) and B-(,l,...,C*-I). There is an edge from i
in A to j in B iff j>r . (A represents the jobs and j 4 B
represents the time- slot [j,j+1]). A cost ci(j) is associ-
ated with edge (i,j).

- 16 -

From our choice of C*, it follows that the graph just
constructed has a maximum matching M of size n. Every such
matching defines a feasible schedule. A matching for which
the maximum edge cost is minimum defines the optimal match-
ing for our scheduling problem.

As suggested by Rinnooy Kan [8], this matching jan be
obtained by performing a binary search on the O(n) edge
costs in G. At each iteration of this binary search, all
edges with cost greater than c are daleted from G and a max-
imum matching in the resulting convex bipartite graph G'
found. if this matcning is of size less tnan n, then there
is no matching in G with maximum edge cost no more than c;
otherwise there is.

Complexity Analysis

The initial sort by release times can be done in O(log2 n)
time using O(n) PEs C7]. C* can be found in O(logn) time
using n P~s and the algorithm of [£j. Each iteration of the
binary search requires the construction of G' and the solu-
tion of a2matching problem. Tqe fiist of these can be done
in 3(log nj time using O(n /log n) PEs. Tne second task
takes 0(log n) time and 0(n) P~s. The total time needed toI deterline the matching with minimum cost is hnereore
O(log n) and the number of PEs needed is J(n /log n).
Hence, the overall 3 complexity of the parallel scneduling
alg~rithi is J(log n). The number of PEs used is
O(n /log n). The complexity of the fastest sequential algo-
rithm known for 2this problem (i.e., the algorithm described
above) is 2(n logn). 3 Henje, tqe ZPU of our parallel algo-
rithm is O(n logn/(log n* n /log n))=O(l).

3.2 Job Sequencing With Release Times and Deadlines

Once again, each job has a processing requirement that is
one unit. However, this time there is a release time r.,O
deadline d., and weight w. associated witn job i. No job
may be schiduled before iis release time. We are interested
in obtaining a maximum weight subset of the n jobs such that
all jobs in this subset can be scheduled on a single machine
in such a manner that none starts before its release time or
finishes after its deadline.

This problem can be solved efficiently by a sequential
greedy algorithm. Jobs are considered in nondecreasing
order of the weights. If the job, i, currently being con-
sidered can be scheduled together with all the others so far
scheduled such tnat no job violates its release time or
deadline, then job i is in the optimal schedule. Otnerwise,
it is not. This feasibility test can be carried out in O(n)

- 17 -

time. So, the sequential algorithm has complexity O(n2

For the parallel algorithm, we resort to a convex
bipartite graph formulation. The A set represents the n
jobs; so, IA=n. The B set represents time slots. Let
a=min(r.}I and D=max~d.}. B - Ia,a+I,....b-lJ. In the con-
vex bipirtite graph coiresponding to the scheluling problem,
there is an edge from i in A to j4B iff r.<j<d.. The weight
of each edge incident on vertex i4A is w.. We wisn to finda matching 4 for which the sum of edge wights is maximum.

jur parallel algorithm for this is based on the greedy
sequential algorithm for joo sequencing witn release times
and ieadlines. Define the binary relation R on tne weights
w. as follows:
1

wi R w. iff wi<w or (wi=w. and i>j)

Let G. be the convex bipartite graph obtained from G by
deleting all edges with weight w. such that w. R w..
Clearly, the following determines wheiher or not i islin t~emaximum weight matching:

a) Determine the size of the maximum cardinality
matching in G.. Let this be si

b) Delete all edges incident on vertex i4A of G.
Determine the size of the maximum cardinaliy
matching in the new graph. Let this be s'..

c) i is in the maximum weight matching iff S is i + I.

So, each vertex can determine, in parallel, whether or
not it is in the maximum weight matchiag. To avoid raad
conflicts, we need to maKe n copies oJ the graph G. This
can be done in J(logn) time using O(n) PEs. Gi can be con-
structed in O(l) time using O(n) PEs per vertex i. Tren,
steps a), b), and c) 2bove can be performed in 0(log n)
time using a total of O(n) P~s. (Note that only pass I of
the parallel convex matching algorithm need be executed.)
The total time needed to determine the subse of A in the
maximum weight matching is theref2 re O(log n). The number
of P~s can easily be reduced to O(n /logn).

Once we have obtained the above subset of A, the actual
matching can be determined by deleting from G all vertices
that are not in this subset. A maximum cardinality matching
on the resulting graph yields the desired matching with max-
imum weight. This corresponds to an optimal schedule for
the scheduling problem.

The complexit of te par~llel algorithm is O(log 2n)
and its EPU is O(n /(log n * n /logn)) - O(l/logn).

Exmaple J.l: Figure 3.1 gives an example job set. Let

- Id -

A.=(jliRjj. Figure 3.2 gives the H.s for our example. The
c~nvax graph G is shodn in Figure 33.. The maximum matcn-
ing in -4 is shown by broken lines. The maximum matching in
the grapil obtained from a 4 by deleting edges incident an
vertex 4 is shown by wavy lines. These two matchings are of
the same cardinality. dence, vertex 4 is not in the maximum
waight matching. []

i 1 2 3 4 5 6 7 8 9 10 i

r 1 4 5 1 3 0 4 2 6 2 4
d.
d 3 6 6 3 6 1 6 6 7 3 7

w1 50 55 65 40 70 20 60 80160 30 85

Figure 3.1

3.J Preemptive Scheduling ith Precedence Contraints

Let J be a set of n unit time jobs. Let P be a precedeaice
relation on J. For i4J and j4J, iPj iff i must be completed
before j can commence. We may assume that P is a partial
order. Hence, P may be represented as a directed acyclic
graph (dag) as in Figure 3.4 (strictly speaxing, P is the
transitive closure of this graph). The directed edge (i,j>
means that i must be completed before j can start (i.e., iPj
). .ie also assume that jobs have been indexed so that iPj
implies i<j. This is true of the indexing (of nodes) in
Figure 3.4.

Muntz and Coffman [5] have developed a level algorithm
to obtain minimum finish tiime preemptive schedules for J (as
above) when the number of machines available is 2. Their
algorithm also works for the case when the processing times
are mutually commensurable (rather than simply I unit). A
set of times (t1 , t2, ...,tnI is mutually commensurable iff
each is a multib1e of some number w. In the case of
mutually commensurable times, each job is broken into a
chain of jobs each requiring w units of processing. In this
section, we shall deal directly only with the case of unit
time tasks.

H, - {2,3,5,7,8,9,111 H7 - {3,5,8,11}

s i = 6 ' 5 Job 1 is in si W 5 '= 4 Job 7 is in

H2 {3,5,7,8,9,111 H8 a {111

si = 5 s' 5 Job 2 is out si - 2 s' - 1 Job 8 is in

H3 = {5,8,111 H9 - (3,5,7,8,11}

si M 4 s.' 3 Job 3 is in s, 5 si ' 5 Job 9 is out

H4 - (1,2,3,5,7,8,9,11} H10 , {1,2,3,4,5,7,8,9,11)

-O o s b job 4 i6 ouc si
= 6 s i 6 Job 10 is-out

H5 - {8,111 = { 0
H1 5

s- A 3 si
2 Job 5 is in I si 0 Job11isin

H 6 a tl,2,3,4,5,7,8,.9,10,Ii}

s iM7 s i t -6 Job 6 is in

Figure 3.2

Let G oe tne dag representation of the precedence rela-
tion P. A node in G is terminal iff its out-degree is 0.
the level of a node in G is the length of the longest path
from v to any terminal node. All terminal nodes have level
0. In Figure 3.4, the number outside edch node is its
level.

Muntz and Coffman's E5J algorithm to obtain minimum
finish time 2-machine schedules is given in Figure 3.5. One
observes that the objective of the for loop of this algo-
rithm is to minimize the numberof sets S. with ISi =I.
This can be done in parallel as follows. Let be the max-
imum lavel in the precedence graph G. Let L. be the level
of vertex i in G. Let Di be the length of the longest path
from any vertex with no predecessors to i. Let H.=L-D..
The Li, DiJ pairs of each vertex in our example is given in
Figure 3.4. Note that H. is the largest j such that job i
could possibly be in S following the execution of the for
loop in the Muntz-Coff~an algoritrm.

A job i is said to be critical iff L -H. Only non-
critical jobs are candidates for displacemint to other sets.
Also, only those sets S. that initially have exactly one
critical job are candiates to receive a new job during the
for loop. Note that every Si must have at least one

- 2J -

54

7

Figure 3.3

critical job. In Figure 3.6, the noncritical jobs nave been
marked with an X. Sets that are candidates to receive a new
job have also been marked with an X. Double vertical lines
mark set boundaries.

ro determine the movement of noncritical jobs to candi-
date sets, we construct a convex bipartite graph in which
the A set consists of the noncritical jobs while the B set
consists of the candidate sets. There is an edge from i4A
to j*B iff L. j < d.. For our example, the resulting
graph is shown-in Fighre 3.7.

We intend to use a maximum matching M in the graph con-
structed above as follows: if (i,j) is an edge of the match-
ing M, then job i is moved to set S.; vertices of A that are
not matched to any vertex in B remain in their original set.

The maximum matching M is to be obtained from the con-
vex bipartite graph constructed above as follows:

21 -

Figure 3.4

procedure SCki
i4-- maximum level

S. -all jobs in J ihlevel=i, 0<i<5

2[

f3r [3 - 3 to 1 do -3 -

if" ISkI=l then find the largest j such that jk and
s. contains a job all of wmhose pro-cFssors are in S, S ..

If no such j exikts h~n exit n~if.I
prceuq be this alueof - d-Tr
be the job in S with the above pro-

perty q
Sq 4- S - fr} sk 4- S. u fr}

endif L q 1 d
endo
peemptively schedule the jobs in each S. using

McNaughton's rule.
Jobs in S. precede those in Spr.

end SCH in

Figure 3.5 The Muntz-Coffman Algorithm

- 22 -

__ _ ~ K3 2_ _ 1 01

i 1 3 5 6 7 2 8 4 10 9 11

L 5 4 313 3 3 2 1 0
se __4 1 3 0

H 5 3 3x
non

Xcritical l- X

:andidate XII

set X ' X

Figure 3.6

A B new index

2 05 04- l4

1 4

5

Figure 3.7 Convex Bipartite Graph.

(1) reindex the vertices in B. The new index of vertex
i4B is L-i. So, for i4A, s.=L-H. and hi=L-L..

(2) use Glover's algorithm considering vertices in B in
increasing order of index.

Let S' S' S' be the sets obtained by updating
'Sr.''""'5 S iuing thg maximum matching above. These

updaiea sets tatisfy the following properties%

- 23 -

(a) There is no joo pair (i,j) such that iPj anJ i4S'a

j4Sb for a
<b.

(b) There is no partition of the job set J that satis-
fies property (a) and has a fewer number of sets of
size 1 than in S'L,..,S'O.

For our example, the maximum matching M is
[(2,4),(4,2),(9,l)} (solid lines in Figure 3.7). So,

' .5=., i=0,1,2,5. S'3 =[5,6,71; and S'4 =(3,21. Properties
(a3 ad (b) hold for our example.

The correctness of (a) follows from the indexing scneme
imposed on the jobs (viz. iPj implies i~j) and the unique
way in which Glover's algorithm works. Suppose that state-
ment (a) is incorrect. Then, there exists a job pair (i,j)
such that iPj and i4S' a j4 '. and a<b. Since no such joo
pair exists in S .. , S , it must be the case that job j
is noncritical and is matcnd to b (old indexing) in M (as
only noncritical jobs can change sets and no job moves to a
set of smaller index). From the definition of L and H and
the knowledge that iPj, it follows that H.>Li , d. > L.,
L.>L., and Hi >H.. if job i is critical, then 1-t Ls t e-a~e
t~at3L >H.. So job j cannot possibly be matched to a set b
with ence, we may assume that i is also noncritical.
Again, if i is not matched in M, then a>b as for a to be
less than or equal to b, it must be the case that L !. .
But since L.>L., h.<h. and i must get matched to b bef~re j
can (see Glo~er~s aigoiithm). Hence, i and j must both be
matched in M. i is matched to a and j to b. Hence, a # b.
If a<b then vertex b is considered before a (as its new
index is L-b<L-a). Since i P b, it must be the case that d.
> b >L. Also, L.i>L. implies that h .(h.. Hence, Glover's
algorithm will match I to b and not j tob.

The truth of property (b) is established using the fol-
lowing reasoning. If i4B is such that no vertex of A is
matched to i in M, then IS'. I=I. To see this, observe that
S. has exactly one criticki job. Every noncritical joo in
m. is a candidate for matching with i4B. Thus, if no job i3
matched with i, then all these noncritical jobs are matched
elsewhere and S'. 1=1. It is readily seen that if i4B is
matched in M, then IS'.I >1. Hence, the number of sets of
size I is minimized when a maximum matching is used.

Complexity Analysis

The steps in our parallel preemptive scheduling algorithm
are:

1) Determine L. and H.. li~n
2) Mark the nohcritickl jobs
3) Mark the candidate sets
4) Construct the convex bipartite graph

- 24 -

5) Find the maximum matching A
6) Reassign matched joos to their new sets
7) Scnedule jobs in the same set using Mclaughtons

rule.

Step I can be performed in O(log 2n) time using the
critical pata algorithm developd by Dexel, Nassimi, and
Sanni E3J. This algorithm uses O(n /logn) PEs. The noncrit-
ical jobs can be identified in O(l) time using n PEs. The
sets S ... ,S may be obtlined in O(logn) time by sorting on
L,. S - 4is requires O(n) PEs. The candidate sets can be
marked in 0(logn) time and the resulting convex bipartit
graph may be constructed in an alditional J(l) time using n
PEs. The matching requires O(log n) time and O(n) PEs while
the reassigning takes J(l) time. A parallel implementation
of MCNaughtons rule appears in L1]. This has complexity
J(logn) and uses 0(n/logn) PEs.

dence, the overall complexity of our seven ste paral-
lal algorithm for preemptiIe scheduling is O(log n). The
number of PZs used is O(n /logn). Since, the fastest
sequential algorithm known for this problem (i.e., the
Auntz-Coffman algorithm) has complexity O(n), the EPU of

our parallel algorithm is O(n 2/(log 2n*n 3 /logn))
u(I/(nlogn)).

4. Conclusions

We nave developed fast parallel algorithms for several ver-
sions of the matching problem for convex bipa-tite graohs.
In Section 2, we explicitly considered the maximum cardinal-
ity matching problem. in Sections 3.1 and 3.2, we con-
sidered the problems of obtaining a maxiwum matching that
minimized the maximum oeight edge used as well as one that
maximized the total weight of the used edges. Both tnese
problems were discussed in connection witn the scheduling
problems in which they naturally arose. Finally, the maximum
cardinality matching algorithm was again used to solve the
preemptive scheduling problem of Section 3.3 efficiently.

This paper has further enhanced the utility of the
binary tree method of Dekel and Sahni [2] for the design of
parallel algorithms. It should also be pointed out that
while all of our complexity analyses have assumed the avai-
lability of as many PEs as needed, our algorithms can be
used when fewer PEs are available. The complexity of each
algorithm will increase by no more than the shortfall in
PEs. So if only half the number of PEs is available, then
the time needed will at most double (except for a possible
constant increase in overhead).

- 25 -

5. References

1. DeKal, E. and Sanni, S., "Parallel scneduling algo-
rithm," Department of Computer Science, University of
Minnesota, Technical Report 81-i.

2. Dekel, C., and Sanni, S., "Binary trees and parallel
scheduling algorithms," Department of Computer Science,
University of Minnesota, Technical Report a-19.

3. Dekel, E., Nassimi, D., and Sahni, S., "Parallel matrix
and graph algorithms" Proc. of Seventeenth Annual
Alleerton Conf. on Communication,Control and Computing
Oct 1979 pp. 27-36. (to appear in SIAM J. Computing)

4. Glover, F., "Maximum matching in a convex bipartite
graph," Naval Res. Logist. Quart., 14 (1967), pp. j13-
316.

5. Muntz, R. R., and Coffman, E. G., Jr., "Optimal preem-
tive scheduling on tdo-processor systems," I88E Trans
on Computer, c-18, (1969) pp. 114-1020.

6. Nassimi, D., and-Sanni S., "Bitonic sort on a mesh con-
nected parallel computer," IEEE Trans on Computers, c-
28, no. 1, January 1979, pp.2-7.

7. Preparata, F. P., "New parallel-sorting schemes," £EEZ
Trans. on Computers, c-27, no.7, July 1978, pp.669-673.

8. Rinnooy Kan, A. H. G., "Machine scheduling problems,
classification complaxity, and computation". Nignoff,
The Hague, 1976.

9. Savage, C., "Parallel algorithms for graph theoretic
problems," Ph.D. Thesis, University of Illinois,
Urbana, August 1978.

IUNCTASSTFIED
AECU.'.ITY CLASSIFICATION OF TWIS PAGE (When1 D.le Entered)

iRREPORT DOCUMENTATION PAGE EAD INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMIER

4. TITLE (and Subtitle) S. TYPE Of' REPORT 6 PERIOD COVERED

A Parallel Matching Algorithm for Convex Technical Report

Bipartite Graphs and Applications to Scheduling April 1981
4. PERFORMING ORG. REPORT NUMBER

7. AUTnOR(.) 6. CONTRACT OR GRANT NUMUER,()

Eliezer Dekel and Sartaj Sahni N00014-80-C-0650

'. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT. PROJECT, TASK

Computer Science Department AREA G WORK UNIT NUMBERS

University of Minnesota
136 Lind Hall, 207 Church St. SE, Mpls., MN 55455

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Department of the Navy April 1981
Office of Naval Research IS. NUMBEROF PAGES

Arlington, Virginia 22217 25
14. MONITORING AGENCY NAME & AOORESS(Il different from Controlling Office) IS. SECURITY CLASS. (of tie reer)

UNCLASSIFIED
ISa. DECLASSIFrICATION/OOWNGRAOING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Unlimited

17. DISTRIBUTION STATEMENT (of the abstrl entere" in Block 20, If different from Report)

'1. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue an eVese side if o eleemy Ed Identify by block nhumber)

Parallel algorithm, convex bipartite graph, scheduling, complexity.

20. ASSTRACT (Coneinue on reverse eido if t eoemgy and Idflly by bleak nwo")

An efficient parallel algorithm to obtain maximum matching in convex bi-
partite graphs is obtained. This algorithm can be used to obtain efficient
parallel algorithms for several scheduling problems. Some examples are: job
scheduling with release times and deadlines; scheduling to minimize maximum
completion time.

OD , 1473 EoIION OF I NOV45 iS OSOLEYs Unclassified
S 01,2-LF-O14-6601

